Towards Single-Component and Dual-Component Radar Emitter Signal Intra-Pulse Modulation Classification Based on Convolutional Neural Network and Transformer

نویسندگان

چکیده

In the modern electromagnetic environment, intra-pulse modulations of radar emitter signals have become more complex. Except for single-component signals, dual-component been widely used in current systems. order to make system ability classify and modulation at same period time accurately, this paper, we propose a multi-label learning method based on convolutional neural network transformer. Firstly, original single channel sampled sequences are padded with zeros length. Then converted frequency-domain that only contain amplitude information. After that, data normalization is employed decrease influence amplitude. preprocessing, designed model which combines transformer accomplish classification. The extensive experiments indicate proposed consumes lower computation resources has higher accuracy than other baseline methods classifying eight types thirty-six modulation, where overall weighted beyond 90%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radar Emitter Signal Recognition Based on EMD and Neural Network

Radar emitter signal (RES) recognition is the important content in radar reconnaissance and signal processing. In order to study the problem of RES recognition, and to improve the RES recognition rate of the electronic warfare equipment, the empirical mode decomposition (EMD) theory and wavelet packet (WP) are introduced into RES feature extraction. A new RES recognition method is proposed base...

متن کامل

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Convolutional Neural Network Based Chart Image Classification

Charts are frequently embedded objects in digital documents and are used to convey a clear analysis of research results or commercial data trends. These charts are created through different means and may be represented by a variety of patterns such as column charts, line charts and pie charts. Chart recognition is as important as text recognition to automatically comprehend the knowledge within...

متن کامل

Facial Expression Classification Based on Multi Artificial Neural Network and Two Dimensional Principal Component Analysis

Facial expression classification is a kind of image classification and it has received much attention, in recent years. There are many approaches to solve these problems with aiming to increase efficient classification. One of famous suggestions is described as first step, project image to different spaces; second step, in each of these spaces, images are classified into responsive class and th...

متن کامل

Principal Component Analysis Based Network Traffic Classification

At present traffic classification is widely concerned in many research fields such as network security, traffic scheduling and traffic accounting. How to identify network traffic fast and accurately is a very meaningful thing. But most machine learning based methods have a lower speed and efficiency, and can not guarantee their stability and usability. For this reason a Principal Component Anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2022

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs14153690